

Notation Subscript i denotes stock i (i=1,2) $E_i = E(r_i)$ (expected return) $\sigma_i^2 = \sigma(r_i)$ (variance) $\sigma_i = \sqrt{\sigma_i^2}$ (standard deviation) (covariance) $\sigma_{ij} = cov(r_i, r_j)$ $\rho_{ij} = cov(r_i, r_j) / \sigma_i \sigma_j$ (correlation coefficient) $\textbf{-1} \leq \rho_{ij} \leq 1$ x_i = portfolio weight of stock i $\Sigma_i x_i = 1$ (where Σ is the summation function) With two stocks only: $x_2 = 1 - x_1$ Eckbo (43) 6

$$\begin{split} & Case 1; \rho_{12} = 1 \\ & \sigma_{p}^{2} = x^{2}_{1}\sigma_{1}^{2} + x^{2}_{2}\sigma_{2}^{2} + 2x_{1}x_{2}\sigma_{1}\sigma_{2} \\ & \sigma_{p}^{2} = (x_{1}\sigma_{1} + x_{2}\sigma_{2})^{2} \\ & \sigma_{p} = x_{1}\sigma_{1} + x_{2}\sigma_{2} \\ & \sigma_{p} = x_{1}E_{1} + x_{2}E_{2} \\ \end{split}$$

$$Let E_{1} > E_{2} and \sigma_{1} > \sigma_{2} (1 most risky asset) \\ Since x_{2} = 1 - x_{1}, and substituting into E_{p} \\ & Since x_{2} = 1 - x_{1}, and substituting into E_{p} \\ & (\sigma_{p} - \sigma_{2})(\sigma_{p} - \sigma_{2}) \\ & \text{MF is a straight line w/positive slope} \end{split}$$

$$\begin{split} & \frac{Case \ 2:}{\sigma_p} \ \rho_{12} = -1 \\ & \sigma_p^2 \ p \ x^2_1 \ \sigma^2_1 + x^2_2 \ \sigma^2_2 - 2x_1 x_2 \sigma_1 \sigma_2 \\ & \sigma_p^2 \ p \ (x_1 \sigma_1 - x_2 \ \sigma_2)^2 \end{split} \\ & \text{Since } \sigma_p \text{ is nonnegative, take absolute value:} \\ & \left\{ \begin{array}{l} & \sigma_p \ p \ x_1 \sigma_1 - x_2 \ \sigma_2 \ p \ x_1 & x_2 \ x_2 x_2$$

$$\begin{split} & Case \ 3; \ \rho_{12} = 0 \\ & \sigma_{p} = x^{2} \sigma^{2}_{1} + x^{2}_{2} \sigma^{2}_{2} \\ & \sigma_{p} = (x^{2}_{1} \sigma^{2}_{1} + x^{2}_{2} \sigma^{2}_{2})^{1/2} \\ & \sigma_{p} = x^{2}_{1} F_{1} + x^{2}_{2} F_{2} \\ \end{split}$$

 Example 	; :			
	Asset	Ei	σ	
	1	10%	20%	
	2	15%	30%	
Also: $r_f = 3$ The Sharp SR _{MVE} = E^e_h	3% and ρ_{12} be Ratio of $\eta_{VE}/\sigma_{MVE} = 0$	₂ =0.5. the MVE-).1250/0.2	portfolio is 2179=0.43	s 359
Eckbo (43)				16

- <u>Rule</u>: for each σ in the matrix, premultiply by the x_i (same row) and x_j (same column) and then sum over all such products
- Thus (verify!):

$$\sigma^{2}{}_{p} = \Sigma_{i}\Sigma_{j}X_{i}X_{j}\sigma_{ij}$$

Note also:

$$\sigma_{p}^{2} = \Sigma_{i} x_{i} \text{cov}(r_{i}, \Sigma_{j} x_{i} r_{j}) = \Sigma_{i} x_{i} \sigma_{ip}$$

where p is the portfolio of all N assets.

 $x_i\sigma_{ip}$ is asset i's contribution to p's total risk σ_{ip} is therefore a marginal risk concept

• Later: $\beta_i \equiv \sigma_{ip} / \sigma_p^2$ (standardized marginal risk)

 $N {\rightarrow} \infty, \quad {\sigma^2}_p \rightarrow AV(\sigma_{ij}):$

- In large portfolios, stocks' own-variances cancel out (is diversified away) and total portfolio risk reduces towards the average covariance
- The remaining covariance is called the portfolios <u>systematic</u> (nondiversifiable) risk
- We will see later that, in asset pricing models, systematic risk is the only priced risk, i.e., the only risk that generates a compensation in terms of expected return

25

Eckbo (43)

utility cost of \$1 less today = utility benefit of R more \$ tomorrow $u'(c_t) \times 1 = E \left[\beta u'(c_{t+1})R_{t+1} \right]$ $1 = E \left[\beta \frac{u'(c_{t+1})}{u(c_t)}R_{t+1} \right] = E \left[m_{t+1}R_{t+1} \right]$

A typical form:

 $u(c) = c^{1-\gamma}$ $\gamma = ext{coefficient of risk aversion}$

- 2. In good times, $E_t(\Delta c_{t+1})$ is high. No one wants to save, must offer them high rates. γ controls the effect "intertemporal substitution elasticity"
- 3. In safe times. $\sigma^2(\Delta c_{t+1})$ is low. Less demand to "save for a rainy day". γ controls the effect, "risk aversion coefficient."

- Certainty equivalent return: r_{CE}=E[U(r)]
- The investor is indifferent between receiving r_{CE} with certainty or investing in the risky asset

А	0.04	0.50	0.78	1.00
r _{CE}	24%	11%	3%	-3%

35

- If A=0.50, will you hold a risk free asset yielding 3%?
- What A-value makes you indifferent between holding the risky and risk free assets?

Eckbo (43)

In our example: 0.25 0.50 0.78 1.00 А y* 1.56 0.78 0.49 0.39 E_p .37 .20 .14 .12 .29 1.17 .51 .37 σ_p What is the meaning of y*=1.56? ■ Can you ever get y*<0 ? Eckbo (43) 42

